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Interdisciplinary Research Strategy for Photovoltaics (PV)

• Think holistically about the entire PV supply chain

• Consider the entire system and all constituent 
materials across different lengths scales and time 
scales

• Identify areas of opportunity and assemble or join 
interdisciplinary teams to solve these problems
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Problem: Charge Carrier Recombination at Metal Contacts

• A key loss mechanism in photovoltaics is charge 
carrier recombination at the metal/semiconductor 
interface of the electrical contacts

• This sets a ceiling on the voltages one can 
obtain and P = IV

4M Li et al. https://doi.org/10.1109/JPHOTOV.2020.3003792 
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Passivating, Carrier-Selective Contacts
• A key loss mechanism in photovoltaics is due to charge carrier recombination at the metal/semiconductor 

interface of the electrical contacts

• Our group is exploring new approaches and materials that can passivate surface defects and are selective 
to either electrons or holes (i.e., carrier-selectivity)

• UCF Collaborators: Prof. Banerjee (MSE, REACT), Prof. Jurca (Chemistry, REACT), Prof. Kumar 
(Mechanical), Prof. Kar (CREOL), Prof. Schoenfeld (FSEC, CREOL), Prof. Kushima (MSE)

• External Collaborators: Fraunhofer ISE, Schmid Group, Beneq, ANU, UC-Berkeley, University of Melbourne
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Passivating, Carrier-Selective Contacts
APCVD of Electron-Selective Polycrystalline Silicon Films

• Our group is exploring new approaches and materials that can passivate surface defects and are selective 
to either electrons or holes (i.e., carrier-selective = block one carrier type, allow the other to pass)

• This can be accomplished by growing a very thin silicon oxide (SiOx) film (~1.5 nm) followed by either an 
electron- or hole-selective material

• Atmospheric pressure chemical vapor deposition (APCVD) is a low cost, high throughput process well 
suited for the PV industry, and we are using this to deposit doped polycrystalline silicon (poly-Si) films that 
serve as electron-selective layers

• Collaborators: Dr. P. Banerjee (MSE, REACT), Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL), Schmid 
Group, Rutgers, ANU
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Photonic Curing of Silver Metallization
Printing and Laser Sintering High Viscosity Silver Pastes

• Printed silver (Ag) pastes undergo a thermal sintering process to coalescence µm-nm scale 
particles and improve electron transport

• Some of these passivating heterojunction materials are very temperature sensitive, so the 
low sintering temperature process leads to high bulk resistivity

• Ag is expensive and the high bulk resistivity means a larger volume of Ag is needed

• Collaborators: Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL)

8T Li et al. https://doi.org/10.1364/OE.455313 
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Multifunctional Nanomaterials
Self-Assembled Al2O3 Nanostructures: Electronic + Photonic Functionality

• Can we develop new materials with unique properties that can 
serve multiple functions?

• Yes – we showed how self-assembled Al2O3 nanostructures 
can electronically passivate surfaces provide improved light 
trapping, electronic + photonic functionality

• Collaborators: Dr. P.G. Kik (CREOL), Brookhaven National 
Laboratory

9Hossain et al. https://doi.org/10.1515/nanoph-2021-0472
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Multiscale Characterization of PV Modules in the Field
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Reliability and Durability Challenges

• Complex combinations of 
materials susceptible to a wide 
range of degradation pathways

• Technologies are changing rapidly, 
along with the materials and 
manufacturing processes used

• Demands for high volume and low 
cost limit where and how in-line 
metrology can be used

• Different climate zones have 
different stressors, but cost 
pressure precludes tailored 
designs for specific climates

• Nevertheless, warrantied lifetimes 
are typically 25+ years with a push 
to go to 50 years
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Multiscale Characterization of PV Modules in the Field
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Data Challenges

Challenges

• Many samples of various types featuring different device 
technologies and materials

• Drilling down to the materials-level is expensive, so 
sampling needs to strategic and guided by the data

• Diverse datasets of different types and large in magnitude

• Time-series vs. asynchronous

• Data collected at the system-, module-, device-, and 
materials-level

• Point data, curves, and images

• In some cases, physical models known and well 
understood, while others this isn’t the case

Needs

• Scalable data sources that are fast and information dense

• Automated analysis pipelines for each of these data 
streams

• Effective means of storing data, models, and results to 
make links across different samples and measurement 
types 14



UCF Florida Solar Energy Center – Cocoa, Florida

• Long-standing PV test facility for the DOE 
and the DOE Regional Test Center for Hot-
Humid Climates

• Many diverse types of modules installed 
at various times

• Great access co-located with indoor 
module characterization labs
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Florida Gulf Coast University – Fort Myers, Florida

• 2 MW PV system installed at Florida 
Gulf Coast University (FGCU) in Fort 
Meyers, Florida

• We performed imaging on this 
system before and after Hurricane 
Ian
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CWRU Sunfarm – Cleveland, OH

Project collaborator: Prof. Roger French and Prof. Laura Bruckman

• 50 kW test site operated by CWRU

• 148 modules installed in 2013

• 20 brands with 6 replicates of each
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CWRU MCCo – Cleveland, OH

1 MW power plant owned by Case Western

• ~4,000 modules on site installed 2016
• 2 brands

• Each about ½ of site
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Time Series Team

Methods

• Remote time-series electrical performance and weather data
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Time Series Team
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Time Series Dashboard

Development of automated interactive dashboard (Will Oltjen et al. at CWRU)
• Missingness and data quality
• Performance loss rate calculation
• System information
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Time Series Analysis – Extreme Weather

Motivation: Hurricane Dorian 2019 
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Indoor Module Characterization Team
• Current-voltage (I-V) or current density-voltage (J-V) curves curves under illuminations

• Electroluminescence (EL) image performed in the dark under bias
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Illuminated J-V Curves – Simple Models

• Photogenerated current density, JG (A/cm2 or 

mA/cm2)

• Diode current density, JD (A/cm2 or mA/cm2)

• Saturation current density, J0 (A/cm2 or 

fA/cm2)

• Ideality factor, n or m

• Series resistance, RS (Ω or Ω⋅cm2)

• Shunt resistance, RSH (Ω or Ω⋅cm2)

• Boltzmann constant, k

• Charge of an electron, q

25
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Illuminated J-V Curves – Loss Mechanisms
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Measurement Methods

• Illuminated J-V and Suns-VOC measurements

• Electroluminescence (EL) imaging
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EL Image Analysis Approaches Developed

Efforts to make EL image analysis more quantitative and less 

subjective

• EL sweep – Turn EL images of modules measured at different 

currents into dark J-V curves of cells to extract RS and J0 

• Pixel RS – Use that in turn to determine the local RS of each pixels in 

the EL image

• EL defect segmentation – Use supervised deep learning for 

semantic segmentation of EL images based on different defect 

classes

28



EL Sweep

29

1. Obtain EL images at increasing bias currents

2. Calculate voltage for each cell within each image

3. Repeat for each image to build dark I-V curve for each cell

4. Analyze dark I-V curves to extract performance characteristics

D.J. Colvin, et al. https://doi.org/10.1016/j.solener.2022.08.043 

https://doi.org/10.1016/j.solener.2022.08.043


EL Sweep of Two M55 Modules - RS and J0 Maps

30
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Pixel RS – Control M55 Module
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M. Li et al. https://dx.doi.org/10.2139/ssrn.4367178 

https://dx.doi.org/10.2139/ssrn.4367178


Pixel RS – Degraded M55 Module
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Pixel RS - Comparison
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Data-Driven Approach to Defect Classification and Localization

• Supervised deep learning model with CNN (Deeplabv3 model with a ResNet-50 backbone)

• Model trained with 17,064 EL images - fully annotated dataset

• Defect classes shown below - 95.4% pixel-level accuracy achieved

34J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059 
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Examples
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Contact corrosion Grid interruptions
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Grid interruptions
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Resistive cracks
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J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059 
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Complete EL Image Analysis Sequence
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Module Characterization –Coring

• Module characterization guides us to 
select regions for extracting cell samples

• Curves tell us more on the loss 
mechanisms and magnitude of the 
power loss

• Images tell us the location of possible 
defects and the patterns can indicate 
the possible root cause

37



Device and Materials Characterization
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Device and Materials Characterization

• Multi Al-BSF
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Automated Analysis of SEM Images

• Semantic segmentation of cross-sectional SEM images

• Again – goal is to make the evaluation of these images more automated 

and less subjective

40



Multiscale Characterization of PV Modules in the Field
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Field Inspection Team

• Methods

• Pole-mounted IR imaging

• Pole-mounted UV fluorescence (UVF) imaging

• Drone-based UVF imaging

• Scanning photoluminescence (PL) and non-contact electroluminescence 
(EL)

42



Pole-Mounted IR Imaging
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Pole-Mounted UVF Imaging
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Pole-Mounted UVF Imaging

• What do you do with the images?

• Need to make sense of them, but 
there are too many to manually inspect

• Subject matter experts establish a 
process to interpret the patterns 
observed

• Then, images can become useful 
information

• Again, the analysis must be automated 
– there are far too many images to 
evaluate them all manually

45



UVF Image Analysis
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Drone-Based UVF with UV LEDs

● BrightSpot has performed 
several drone flights using a UV-
LED payload

● Good for a low volume sites and 
for panels that fluoresce brightly
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Outdoor PL and EL Imaging
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Need for Data FAIRification

Making Datasets & Models FAIR

● By “FAIRification”

Enables Models to find Data

● And Data to find Models

So that they can advance

● Without human intervention

This is an aspect of the Semantic Web

● And Resource Description Framework

● Hbase triples are an example of RDF

FAIR Data very active in Europe

● U.S. efforts just starting now

49M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and stewardship,” Sci. Data, vol. 3, no. 1, pp. 1–9, Mar. 2016, doi: 10.1038/sdata.2016.18. 

https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-Data.pdf


Future Work

• Through MDS3 Center of Excellence with CWRU and Sandia (Elliott Fowler 
and Matthew Kottwitz), looking to adapt some of these process to electronic 
component reliability

50
Figure: Courtesy of E. Fowler 
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