

Interdisciplinary and Multi-Faceted Research Aimed at Accelerating the Adoption of Solar Energy Technologies

Prof. Kristopher O. Davis

Contributors: <u>Dylan Colvin; Mengjie Li</u>; Max Liggett; Jarod Kaltenbaugh; William Oltjen; Xuanji Yu; Manjunath Matam; Hubert Seigneur; Andrew Gabor; Philip Knodle; Greg Horner; Laura Bruckman; Roger French

Organizations: University of Central Florida; Case Western Reserve University; BrightSpot Automation; Tau Science

College of Engineering and Computer Science

CREOL, The College of Optics and Photonics

BrightSpot Automation

University of Central Florida

CREOL, The College of Optics and Photonics

UCF Team Members and Key Collaborators

CWRU SDLE Team at UCF

Interdisciplinary Research Strategy for Photovoltaics (PV)

Problem: Charge Carrier Recombination at Metal Contacts

- A key loss mechanism in photovoltaics is charge carrier recombination at the metal/semiconductor interface of the electrical contacts
- This sets a ceiling on the voltages one can obtain and P = IV

M Li et al. <u>https://doi.org/10.1109/JPHOTOV.2020.3003792</u>

Passivating, Carrier-Selective Contacts

- A key loss mechanism in photovoltaics is due to charge carrier recombination at the metal/semiconductor interface of the electrical contacts
- Our group is exploring new approaches and materials that can passivate surface defects and are selective to either electrons or holes (i.e., carrier-selectivity) ٠
- UCF Collaborators: Prof. Banerjee (MSE, REACT), Prof. Jurca (Chemistry, REACT), Prof. Kumar (Mechanical), Prof. Kar (CREOL), Prof. Schoenfeld (FSEC, CREOL), Prof. Kushima (MSE) •
- External Collaborators: Fraunhofer ISE, Schmid Group, Beneg, ANU, UC-Berkeley, University of Melbourne ٠

Atomic Layer Deposition of Atomic Layer Deposition of Hole-Selective MoO_x

G. Gregory et al., Advanced Materials Interfaces, 2020.

Atomic Layer Deposition of Hydrogenated Al₂O₃/MoO_y

Passivating, Carrier-Selective Contacts APCVD of Electron-Selective Polycrystalline Silicon Films

- Our group is exploring new approaches and materials that can passivate surface defects and are selective to either electrons or holes (i.e., carrier-selective = block one carrier type, allow the other to pass)
- This can be accomplished by growing a very thin silicon oxide (SiO_x) film (~1.5 nm) followed by either an electron- or hole-selective material
- Atmospheric pressure chemical vapor deposition (APCVD) is a low cost, high throughput process well suited for the PV industry, and we are using this to deposit doped polycrystalline silicon (poly-Si) films that serve as electron-selective layers
- Collaborators: Dr. P. Banerjee (MSE, REACT), Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL), Schmid Group, Rutgers, ANU

Invited: JF Mousumi et al. https://doi.org/10.1088/1361-6463/ac0e5c

UCF

c-Si

Passivating, Carrier-Selective Contacts APCVD of Electron-Selective Polycrystalline Silicon Films

- Our group is exploring new approaches and materials that can passivate surface defects and are selective to either electrons or holes (i.e., carrier-selective = block one carrier type, allow the other to pass)
- This can be accomplished by growing a very thin silicon oxide (SiO_x) film (~1.5 nm) followed by either an electron- or hole-selective material
- Atmospheric pressure chemical vapor deposition (APCVD) is a low cost, high throughput process well suited for the PV industry, and we are using this to deposit doped polycrystalline silicon (poly-Si) films that serve as electron-selective layers
- Collaborators: Dr. P. Banerjee (MSE, REACT), Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL), Schmid Group, Rutgers, ANU

Photonic Curing of Silver Metallization Printing and Laser Sintering High Viscosity Silver Pastes

- Printed silver (Ag) pastes undergo a thermal sintering process to coalescence µm-nm scale particles and improve electron transport
- Some of these passivating heterojunction materials are very temperature sensitive, so the low sintering temperature process leads to high bulk resistivity
- Ag is expensive and the high bulk resistivity means a larger volume of Ag is needed
- Collaborators: Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL)

Multifunctional Nanomaterials Self-Assembled Al₂O₃ Nanostructures: Electronic + Photonic Functionality

- Can we develop new materials with unique properties that can serve multiple functions?
- Yes we showed how self-assembled Al₂O₃ nanostructures can electronically passivate surfaces provide improved light trapping, electronic + photonic functionality
- Collaborators: Dr. P.G. Kik (CREOL), Brookhaven National Laboratory

Nanopillars

Hossain et al. https://doi.org/10.1515/nanoph-2021-0472

SEM

Multifunctional Nanomaterials Self-Assembled Al₂O₃ Nanostructures: Electronic + Photonic Functionality

- Can we develop new materials with unique properties that can serve multiple functions?
- Yes we showed how self-assembled Al₂O₃ nanostructures can electronically passivate surfaces provide improved light trapping, electronic + photonic functionality
- Collaborators: Dr. P.G. Kik (CREOL), Brookhaven National Laboratory

Hossain *et al.* <u>https://doi.org/10.1515/nanoph-2021-0472</u>

Nanopillars

SEM Images

Multiscale Characterization of PV Modules in the Field

Reliability and Durability Challenges

- Complex combinations of materials susceptible to a wide range of degradation pathways
- Technologies are changing rapidly, along with the materials and manufacturing processes used
- Demands for high volume and low cost limit where and how in-line metrology can be used
- Different climate zones have different stressors, but cost pressure precludes tailored designs for specific climates
- Nevertheless, warrantied lifetimes are typically 25+ years with a push to go to 50 years

12

Multiscale Characterization of PV Modules in the Field

Data Challenges

Challenges

- Many samples of various types featuring different device technologies and materials
- Drilling down to the materials-level is expensive, so sampling needs to strategic and guided by the data
- Diverse datasets of different types and large in magnitude
 - Time-series vs. asynchronous
 - Data collected at the system-, module-, device-, and materials-level
 - Point data, curves, and images
 - In some cases, physical models known and well understood, while others this isn't the case

Needs

- Scalable data sources that are fast and information dense
- Automated analysis pipelines for each of these data streams
- Effective means of storing data, models, and results to make links across different samples and measurement types

UCF Florida Solar Energy Center – Cocoa, Florida

- Long-standing PV test facility for the DOE and the DOE Regional Test Center for Hot-Humid Climates
- Many diverse types of modules installed at various times
- Great access co-located with indoor module characterization labs

Florida Gulf Coast University – Fort Myers, Florida

- 2 MW PV system installed at Florida Gulf Coast University (FGCU) in Fort Meyers, Florida
- We performed imaging on this system before and after Hurricane lan

CWRU Sunfarm – Cleveland, OH

Project collaborator: Prof. Roger French and Prof. Laura Bruckman

- 50 kW test site operated by CWRU
 - 148 modules installed in 2013
 - 20 brands with 6 replicates of each

17

CWRU MCCo – Cleveland, OH

1 MW power plant owned by Case Western

- ~4,000 modules on site installed 2016
- 2 brands
 - Each about ¹/₂ of site

Time Series Team

Methods

• Remote time-series electrical performance and weather data

Time Series Team

UCF

Time Series Dashboard

Development of automated interactive dashboard (Will Oltjen et al. at CWRU)

- Missingness and data quality
- Performance loss rate calculation
- System information

Grade:				23:00
Outlier %	Missingness %	Longest Missing Gap	Length Requirement	21:00
В	А	С	Р	17:00

Performance Loss Rate:

• -1.093 ± .215 %

Method

- XbX + Universal Temperature Correction
 - Year on Year Regression
- Bootstrapped Uncertainty

15:0

13:00

09:00

07:00

05:00

03:00

Time Series Analysis – Extreme Weather

P_{loss} ~1%

Before

After

UCF

22

Indoor Module Characterization Team

- Current-voltage (I-V) or current density-voltage (J-V) curves curves under illuminations
- Electroluminescence (EL) image performed in the dark under bias

UCF

Indoor Module Characterization Team

- Current-voltage (I-V) or current density-voltage (J-V) curves curves under illuminations
- Electroluminescence (EL) image performed in the dark under bias

24

Illuminated J-V Curves – Simple Models

- Photogenerated current density, J_G (A/cm² or mA/cm²)
- Diode current density, J_D (A/cm² or mA/cm²)
- Saturation current density, J₀ (A/cm² or fA/cm²)
- Ideality factor, *n* or *m*
- Series resistance, $R_{\rm S}$ (Ω or $\Omega \cdot \rm cm^2$)
- Shunt resistance, R_{SH} (Ω or $\Omega \cdot cm^2$)
- Boltzmann constant, k
- Charge of an electron, q

$$J = J_G - J_0 \left(e^{\frac{q(V+JR_S)}{kT}} - 1 \right) - \frac{V+JR_S}{R_{SH}}$$

Illuminated J-V Curves – Loss Mechanisms

26

Measurement Methods

- Illuminated *J-V* and Suns-*V*_{oc} measurements
- Electroluminescence (EL) imaging

EL Image Analysis Approaches Developed

Efforts to make EL image analysis more quantitative and less subjective

- EL sweep Turn EL images of modules measured at different currents into dark J-V curves of cells to extract R_s and J_0
- Pixel $R_{\rm S}$ Use that in turn to determine the local $R_{\rm S}$ of each pixels in the EL image
- EL defect segmentation Use supervised deep learning for semantic segmentation of EL images based on different defect classes

EL Sweep

- 1. Obtain EL images at increasing bias currents
- 2. Calculate voltage for each cell within each image
- 3. Repeat for each image to build dark *I-V* curve for each cell
- 4. Analyze dark *I-V* curves to extract performance characteristics

D.J. Colvin, et al. https://doi.org/10.1016/j.solener.2022.08.043

EL Sweep of Two M55 Modules - $R_{\rm S}$ and $J_{\rm O}$ Maps

1.0

1.4

1.2

- 1.0

0.8

0.4

- 2.4

2.2

J01- Dark Saturation Current (A/cm2)

J01- Dark Saturation Current (A/cm2

Pixel R_s – Control M55 Module

M. Li et al. https://dx.doi.org/10.2139/ssrn.4367178

UCF

Pixel R_S – Degraded M55 Module

Pixel R_S - Comparison

Control M55 Module

0

Degraded M55 Module Module EL

L 10

Data-Driven Approach to Defect Classification and Localization

- Supervised deep learning model with CNN (Deeplabv3 model with a ResNet-50 backbone)
- Model trained with 17,064 EL images fully annotated dataset
- Defect classes shown below 95.4% pixel-level accuracy achieved

(a) Cracks

(b) Common contact defects

(c) Interconnect defects

(d) Rare contact defects

J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059

Examples

Resistive interconnects

J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059

Complete EL Image Analysis Sequence

EL Defect Segmentation

Module Characterization – Coring

- Module characterization guides us to select regions for extracting cell samples
- Curves tell us more on the loss mechanisms and magnitude of the power loss
- Images tell us the location of possible defects and the patterns can indicate the possible root cause

Device and Materials Characterization

UCF

Device and Materials Characterization

• Multi Al-BSF

39

Automated Analysis of SEM Images

- Semantic segmentation of cross-sectional SEM images
- Again goal is to make the evaluation of these images more automated and less subjective

Multiscale Characterization of PV Modules in the Field

Field Inspection Team

- Methods
 - Pole-mounted IR imaging
 - Pole-mounted UV fluorescence (UVF) imaging
 - Drone-based UVF imaging
 - Scanning photoluminescence (PL) and non-contact electroluminescence (EL)

42

Pole-Mounted IR Imaging

Outdoor installation during daytime

Pole-mounted IR imaging setup

Pole-Mounted UVF Imaging

Pole-mounted UVF imaging setup

44

Pole-Mounted UVF Imaging

- What do you do with the images?
- Need to make sense of them, but there are too many to manually inspect
- Subject matter experts establish a process to interpret the patterns observed
- Then, images can become useful information
- Again, the analysis must be automated

 there are far too many images to
 evaluate them all manually

UCF

UVF Image Analysis

Input Image

Mask-RCNN Mask

Planar Output

UCF

Drone-Based UVF with UV LEDs

- BrightSpot has performed several drone flights using a UV-LED payload
- Good for a low volume sites and for panels that fluoresce brightly

Outdoor PL and EL Imaging

UCF

Need for Data FAIRification

Making Datasets & Models FAIR

• By "FAIRification"

Enables Models to find Data

And Data to find Models

So that they can advance

• Without human intervention

This is an aspect of the Semantic Web

- And Resource Description Framework
- Hbase triples are an example of RDF

FAIR Data very active in Europe

• U.S. efforts just starting now

Future Work

 Through MDS³ Center of Excellence with CWRU and Sandia (Elliott Fowler and Matthew Kottwitz), looking to adapt some of these process to electronic component reliability

Acknowledgements

UCF

Faculty: Kristopher O. Davis, Mengjie Li, Mubarak Shah Postdoctoral Researchers: Dylan J. Colvin, Eric J. Schneller, Haider Ali Students: Geoffrey Gregory, M. Jobayer Hossain, Nafis Iqbal, Jannatul F. Mousumi, Max Liggett, Rafaela Frota, Joseph Fioresi, Sofia Oliveira

Collaborators CWRU: Roger H. French, Laura Bruckman, Jen Braid, Ina Martin Tau Science: Greg Horner BrightSpot Automation: Andrew Gabor, Phil Knodle Sandia: Elliott Fowler, Matthew Kottwitz

Funding

DE-EE0008155, DE-EEE0008172, DE-EE0009347

DE-NA0004104

