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Interdisciplinary Research Strategy for Photovoltaics (PV)

* Think holistically about the entire PV supply chain

* Consider the entire system and all constituent

matlerlals across different lengths scales and time
scales

* Identify areas of opportunity and assemble or join
interdisciplinary teams to solve these problems
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* A key loss mechanism in photovoltaics is charge
carrier recombination at the metal/semiconductor
Interface of the electrical contacts

* This sets a ceiling on the voltages one can
obtain and P = IV
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Passivating, Carrier-Selective Contacts

* Akey loss mechanism in photovoltaics is due to charge carrier recombination at the metal/semiconductor
interface of the electrical contacts

. Our_%roup IS explorin% new approaches and materials that can passivate surface defects and are selective
to either electrons or holes (i.e., carrier-selectivity)

« UCF Collaborators: Prof, Baner{ee (MSE, REACT), Prof. Jurca (Chemistry, REACT), Prof. Kumar
(Mechanical), Prof. Kar (CREOL), Prof. Schoenfeld (FSEC, CREOL), Prof. Kushima (MSE)

» External Collaborators: Fraunhofer ISE, Schmid Group, Beneq, ANU, UC-Berkeley, University of Melbourne
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Passivating, Carrier-Selective Contacts
APCVD of Electron-Selective Polycrystalline Silicon Films

SOLAR ENERGY
TECHNOLOGIES OFFICE
U.S. Department Of Energy

 Qur

electron- or hole-selective material

group is explorin
to elt%

new approaches and materials that can passivate surface defects and are selective

er electrons or holes (i.e., carrier-selective = block one carrier type, allow the other to pass)
« This can be accomplished by growing a very thin silicon oxide (SiO,) film (~1.5 nm) followed by either an

« Atmospheric pressure chemical vapor deposition (APCVD) is a low cost, high throughput process well
suited for the PV industry, and we are using this to deposit doped polycrystalline silicon (poly-Si) films that

serve as electron-selective layers

» Collaborators: Dr. P. Banerjee (MSE, REACT), Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL), Schmid
Group, Rutgers, ANU
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Passivating, Carrier-Selective Contacts

APCVD of Electron-Selective Polycrystalline Silicon Films

SOLAR ENERGY
TECHNOLOGIES OFFICE
U.S. Department Of Energy

Average Crystallite Size (nm)

Our
to eit

%roup is explorin

new approaches and materials that can passivate surface defects and are selective
er electrons or holes (i.e., carrier-selective = block one carrier type, allow the other to pass)

This can be accomplished by growing a very thin silicon oxide (SiO,) film (~1.5 nm) followed by either an
electron- or hole-selective material

Atmospheric pressure chemical vapor deposition (APCVD) is a low cost, high throughput process well
suited for the PV industry, and we are using this to deposit doped polycrystalline silicon (poly-Si) films that
serve as electron-selective layers

Collaborators: Dr. P. Banerjee (MSE, REACT), Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL), Schmid
Group, Rutgers, ANU
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Photonic Curing of Silver Metallization SOLAR ENERGY

TECHNOLOGIES OFFICE

Printing and Laser Sintering High Viscosity Silver Pastes UG- Togeakimient Ot Ekiey

Printed silver (Ag) pastes undergo a thermal sintering process to coalescence pm-nm scale
particles and improve electron transport

Some of these passivating heterojunction materials are very temperature sensitive, so the
low sintering temperature process leads to high bulk resistivity

Ag is expensive and the high bulk resistivity means a larger volume of Ag is needed
Collaborators: Dr. R. Kumar (Mechanical), Dr. A. Kar (CREOL)
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Multifunctional Nanomaterials
Self-Assembled Al,O,; Nanostructures: Electronic + Photonic Functionality

N/

« Can we develop new materials with unique properties that can 2> sem
serve multiple functions? J | mages

* Yes — we showed how self-assembled Al,O, nanostructures £ N
can electronically passivate surfaces provide improved light ' '

trapping, electronic + photonic functionality ) \ ‘
. . ) —
» Collaborators: Dr. P.G. Kik (CREOL), Brookhaven National SN ST e
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Multifunctional Nanomaterials

Self-Assembled Al,O,; Nanostructures: Electronic + Photonic Functionality

« Can we develop new materials with unique properties that can
serve multiple functions?

* Yes — we showed how self-assembled Al,O, nanostructures
can electronically passivate surfaces provide improved light
trapping, electronic + photonic functionality

» Collaborators: Dr. P.G. Kik (CREOL), Brookhaven National
Laboratory
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Multiscale Characterization

of PV Modules in the Field

Approach

Population Size Information

Time-series I-V More samples

analysis  Less
information

On-site PL, EL,
UVF imaging

Lab
characterization
of modules

Sample coring and

characterization More information

Indoor EL image
Field-based UVF image !
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Time-Series Analysis of Modules, Strings, and Arrays : .

Field Survey and Outdoor Imaging
IR and Visual Field-based UV Fluorescence

Field Retrieval and Indoor Module Characterization

Sample Coring — Characterization SEM image of Ag contact

image
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between the grid
finger and the silicon
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Device and Materials Characterization Team

EDS image of Ag contact XPS spectra of Ag contact before/after
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Reliability and Durability Challenges

Complex combinations of
materials susceptible to a wide
range of degradation pathways

Technologies are changing rapidly,
along with the materials and
manufacturing processes used

Demands for high volume and low
cost limit where and how in-line
metrology can be used

Different climate zones have
different stressors, but cost
pressure precludes tailored
designs for specific climates

Nevertheless, warrantied lifetimes
are typically 25+ years with a push
to go to 50 years
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Multiscale Characterization

of PV Modules in the Field

Approach

Population Size Information

Time-series I-V More samples

analysis  Less
information

On-site PL, EL,
UVF imaging

Lab
characterization
of modules

Sample coring and

characterization More information

Indoor EL image
Field-based UVF image !
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Time-Series Analysis of Modules, Strings, and Arrays : .

Field Survey and Outdoor Imaging
IR and Visual Field-based UV Fluorescence

Field Retrieval and Indoor Module Characterization

Sample Coring — Characterization SEM image of Ag contact

image

Signs of separation
between the grid
finger and the silicon

10000 {
- i ;' i
Location of SEM f e | 8

Diverse Population of Modules Available

4
=
3
P
w»
@
=
[0
»
o
o
3

3 Bsssan
11
)
\
> bor T
T SN
. -\
t |
J I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

e 4 J
bl =

Device and Materials Characterization Team

EDS image of Ag contact XPS spectra of Ag contact before/after

] — degradation
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Data Challenges

Challenges Approach

« Many samples of various types featuring different device
technologies and materials

Population Size Information

Time-series I-V More samples

analysis _ Less
information

 Dirilling down to the materials-level is expensive, so

sampling needs to strategic and guided by the data On-site PL, EL,

UVF imaging
» Diverse datasets of different types and large in magnitude
« Time-series vs. asynchronous

« Data collected at the system-, module-, device-, and
materials-level

« Point data, curves, and images

* In some cases, physical models known and well
understood, while others this isn’t the case

Lab
characterization
of modules

Sample coring and

characterization More information

Needs
* Scalable data sources that are fast and information dense

« Automated analysis pipelines for each of these data
streams

» Effective means of storing data, models, and results to
make links across different samples and measurement

types 14




UCF Florida Solar Energy Center - Cocoa, Florida

* Long-standing PV test facility for the DOE
and the DOE Regional Test Center for Hot-
Humid Climates

 Many diverse types of modules installed
at various times

 Great access co-located with indoor
module characterization labs




Florida Gulf Coast University - Fort Myers, Florida

« 2 MW PV system installed at Florida
Gulf Coast University (FGCU) in Fort
Meyers, Florida

* We performed imaging on this
system before and after Hurricane
lan




CWRU Sunfarm - Cleveland, OH

Project collaborator: Prof. Roger French and Prof. Laura Bruckman

* 50 kW test site operated by CWRU
* 148 modules installed in 2013
» 20 brands with 6 replicates of each

(CASE WESTERN RESERVE

UNIVERSITY  por e




CWRU MCCo - Cleveland, OH

1 MW power plant owned by Case Western

- ~4 000 modules on site installed 2016
- 2 brands
- Each about 12 of site

MGColl'akevie
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CASE WESTERN RESERVE
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Time Series Team

Methods
 Remote time-series electrical performance and weather data




Time Series Team
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Time Series Dashboard

Development of automated interactive dashboard (Will Oltjen et al. at CWRU)
- Missingness and data quality
. Pe rformance IOSS rate CaICUIat|On Photovoltaic Timeseries Analysis Dashboard Data Quality and Missingness  Performance Loss Rate Calculation  System Information

Missingness Heatmap Data Grade
. .
° S Ste m I n fo r m at I O n The heatmap diplays a convenient visual for the timeseries data. Missing values are plotted in gray or white (when o e T - =
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Time Series Analysis - Extreme Weather

(ﬁ Tropical-Storm-Force Wind Speed Probabilities
v-\‘ 4 For the 120 hours (5.00 days) from 2 AM EDT TUE SEP 03 to 2 AM EDT SUN SEP 08
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Indoor Module Characterization Team

« Current-voltage (I-V) or current density-voltage (J-V) curves curves under illuminations
» Electroluminescence (EL) image performed in the dark under bias

|-V and pseudo /-V curves
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Indoor Module Characterization Team

» Current-voltage (I-V) or current density-voltage (J-V) curves curves under illuminations
» Electroluminescence (EL) image performed in the dark under bias




llluminated J-V Curves - Simple Models

Photogenerated current density, J; (A/cm? or a0l s | ]
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llluminated J-V Curves - Loss Mechanisms
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Measurement Methods

« Electroluminescence (EL) imaging
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EL Image Analysis Approaches Developed

Efforts to make EL image analysis more quantitative and less
subjective

EL sweep - Turn EL images of modules measured at different
currents into dark J-V curves of cells to extract Rg and J,

Pixel Rg — Use that in turn to determine the local Rq of each pixels in
the EL image

EL defect segmentation - Use supervised deep learning for
semantic segmentation of EL images based on different defect

classes
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Obtain EL images at increasing bias currents

Calculate voltage for each cell within each image

Repeat for each image to build dark I-V curve for each cell
Analyze dark |-V curves to extract performance characteristics

D.J. Colvin, et al. https://doi.org/10.1016/j.solener.2022.08.043
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https://doi.org/10.1016/j.solener.2022.08.043

EL Sweep of Two M55 Modules - Rq and J, Maps
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Pixel R - Control M55 Module

M. Li et al. https://dx.doi.org/10.2139/ssrn.4367178
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Pixel Rg - Degraded Mo5 Module
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Pixel Rg - Comparison

Control M55 Module Degraded M55 Module

Module EL Module EL

200

400

500 1000 1500 2000 0 500 1000 1500 2000

o

Spatial R; distribution

Spatial Rs distribution

"'Tniifu fi]

0 1000 1500 2000

0 S00 1000 1500 2000




Data-Driven Approach to Defect Classification and Localization

« Supervised deep learning model with CNN (Deeplabv3 model with a ResNet-50 backbone)
« Model trained with 17,064 EL images - fully annotated dataset
« Defect classes shown below - 95.4% pixel-level accuracy achieved

(a) Cracks (b) Common contact defects
Closed Crack Resistive Crack Isolated Crack Front Grid Front Grid Break
| P R Interruption Near Busbar
e -
' gilan S
L 3 >
(c) Interconnect defects

Disconnected Highly Resistive Bright Rear Contact '
Interconnect Interconnect Interconnect Belt Marks Contact Corrosion

--------------------------------------

J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059
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Examples

Resistive interconnects
Contact corrosion Grid interruptions Grid interruptions
ground-truth prediction ground-truth predlctlon (o) ground-truth predlctlon
(a) . - (b) - ©
o — o — .—-- —
L3 - . '.“” ' | = o' ‘
- -.J-.—.—. '
WA 'y

(d) ground-truth prediction (e) ground-truth prediction (f) 9’0Uﬂd -truth predlctlon

Resistive and isolated Cracks Resistive cracks BR?ﬁ 'f’t'tve cra;pks
Interruptions near busbars oth Interruptions

J. Fioresi, et al. https://doi.org/10.1109/JPHOTOV.2021.3131059
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Complete EL Image Analysis Sequence

EL Sweep Pixel Rg

Module EL Rs (ohm-cm?)

2.6
2.5
2.4
2.3
2.2
2.1
2.0
19

EL Defect Segmentation




Module Characterization -Coring

- Module characterization guides us to
select regions for extracting cell samples

- Curves tell us more on the loss
mechanisms and magnitude of the
power loss

- Images tell us the location of possible
defects and the patterns can indicate
the possible root cause




Device and Materials Characterization
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Device and Materials Characterization
e Multi AI-BSF

Busbar/Interconnect Region
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Automated Analysis of SEM Images

- Semantic segmentation of cross-sectional SEM images
- Again - goal is to make the evaluation of these images more automated
and less subjective

Voids

Silver

Glass Mag= 500K X EHT= 4.00kV Date :24 Mar 2023
Signal A = SE2 WD = 3.9 mm Time :13:39:16




Multiscale Characterization

of PV Modules in the Field

Approach

Population Size Information

Time-series I-V More samples

analysis  Less
information

On-site PL, EL,
UVF imaging

Lab
characterization
of modules

Sample coring and

characterization More information

Indoor EL image
Field-based UVF image !

. v b

x
o)
i\
gl
{8
-4

Time-Series Analysis of Modules, Strings, and Arrays : .

Field Survey and Outdoor Imaging
IR and Visual Field-based UV Fluorescence

Field Retrieval and Indoor Module Characterization

Sample Coring — Characterization SEM image of Ag contact

image

Signs of separation
between the grid
finger and the silicon
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Device and Materials Characterization Team

EDS image of Ag contact XPS spectra of Ag contact before/after

] — degradation
18000 | —— Degraded ]
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Field Inspection Team

* Methods
* Pole-mounted IR imaging
* Pole-mounted UV fluorescence (UVF) imaging
* Drone-based UVF imaging

* Scanning photoluminescence (PL) and non-contact electroluminescence
(EL)




Pole-Mounted IR Imaging

IR camera

Sunlight

Outdoor installation during daytime

Pole-mounted IR imaging setup

50

H
o

w
o
Temperature °C

20




Pole-Mounted UVF Imaging

UV light
source

<
UV light //
Camera

Outdoor installation during nighttime

Pole-mounted UVF imaging setup

BrightSpot Automation »




Pole-Mounted UVF Imaging

 What do you do with the images?

* Need to make sense of them, but
there are too many to manually inspect

* Subject matter experts establish a
process to interpret the patterns
observed

* Then, images can become useful
information

* Again, the analysis must be automated
— there are far too many images to
evaluate them all manually

Feature Description Code
Bright square or rectangular pattern in the
center of the cell Oxygen ingress from the
Rectangle perimeter photobleaches fluorophores formed Re
in the center of the cell, leading to dark
perimeter.
Bright ring pattem slightly within cell
Ring perimeter. UV absorbing additives diffuse from Ri
the rear encapsulant to the front
Rectangle o[)ark lines wilv;hnn‘:ngh:’ mda;xgle mg:ﬁ_n. s
Crack xygen ingresses through cracks quenching
the fluomscence.
: More subtle than rectangle cracks, these !
Ring Crack appear as dark breaks in the rings. Ri-C
Dark line fully or partially along busbar in Re-C-BB
Bushar Crack  rectangle patierns (left) or breaks in ring along Ri-(" BBm
basbar length (right). -
£ 2 & Re-BBB or
: Bright UVF signature shown partially or fully 5
Bright Busbar along bushar kength. Ri-BBB or
BEB
e Small round dark spot in rectangle pattern due Y
Dot Crack to a short crack such as an X-crack Re-DC
Crack lines that appear bright due to UV Re-BRC or
Bright Crack absorbing additives diffusing into crack Ri-BRC
regions or backsheet UVE
A cell or region is much brighter than the rest
Hot Spot, Cell,  of the cells in the module. The examples show Re-HS
Regi two hotspots and bright UVF in front of
mounting rails glued to a thin film module.
Gridline Dark lines perpendicular to the bushar. Often Re-GD
Darkening accompanied by cracks b th the busbar -
Soili Dark spots, streaks, or otherwise irregular Re-SL or
2 patierns related to soiling. Ri-SL
TR W w—
Encapsulant Artificially bright regions due to mflection. Re-DL or .-'
Delaminatio Often starts at bushars. Ri-DL
Characteristic dark region in front of junction
Junction Box box location that leads to dark region (left, Re-JB or Ri-JB
Sealing ssues rectangle) or dark region with warped rings .

(right, ring).

m

UCF




UVF Image Analysis

Input Image Mask-RCNN Mask 0
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Drone-Based UVF with UV LEDs

e BrightSpot has performed
several drone flights using a UV-
LED payload

e Good for a low volume sites and
for panels that fluoresce brightly
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[0 (10 £ 111 [

BrightSpot Automation




Outdoor PL and EL Imaging

@u Scrernce
= Built for Solar




Need for Data FAIRIification

Making Datasets & Models FAIR What is FAIR DATA?

- By “FAlRification”
Enables Models to find Data

; . Data and I t terials h . « Metadata and dat derstandable
. And Data to flnd Models . aaén suRpemen ary ma erlas.ave + + Metadataan aaarel'm erstan ‘a e .
. sufficiently rich metadata and a unique . . to humans and machines. Data is .

So that they can advance ; and persistent identifier. « «  deposited in a trusted repository.

« Without human intervention

This is an aspect of the Semantic Web : %
® And Resou rce Descrl pt|0n Framework Metadata use a formal, accessible, Data and collections have a clear
o« Hbase triples are an example of RDF

shared, and broadly applicable language . usage licenses and provide accurate

for knowledge representation. & information on provenance.

FAIR Data very active in Europe
o U.S. efforts just starting now

M. D. Wilkinson et al., “The FAIR Guiding Principles for scientific data management and stewardship,” Sci. Data, vol. 3, no. 1, pp. 1-9, Mar. 2016, doi: 10.1038/sdata.2016.18. 49 \
N
UCF



https://libereurope.eu/wp-content/uploads/2017/12/LIBER-FAIR-Data.pdf

Future Work

* Through MDS3 Center of Excellence with CWRU and Sandia (Elliott Fowler
and Matthew Kottwitz), looking to adapt some of these process to electronic
component reliability

SEEOISNREIS
FINGER COMB PATTERN ©
L »0.70 cm W » 200 pm G » 200 pm

. COMB COLUMN 1 TC

Figure: Courtesy of E. Fowler
(Sandia)
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